Journal of the American Institute for Conservation

ISSN: 0197-1360 (Print) 1945-2330 (Online) Journal homepage: https://www.tandfonline.com/loi/yjac20

2
g
a
2}

€Y Routledge

Taylor &Francis Group

Applying conservation ethics to the examination
and treatment of software- and computer-based
art

Deena Engel & Joanna Phillips

To cite this article: Deena Engel & Joanna Phillips (2019) Applying conservation ethics to the
examination and treatment of software- and computer-based art, Journal of the American Institute
for Conservation, 58:3, 180-195, DOI: 10.1080/01971360.2019.1598124

To link to this article: https://doi.org/10.1080/01971360.2019.1598124

@ Published online: 08 Jun 2019.

N
CJ/ Submit your article to this journal &

||I| Article views: 230

A
& View related articles &'

PN

(!) View Crossmark data &'

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=yjac20

https://www.tandfonline.com/action/journalInformation?journalCode=yjac20
https://www.tandfonline.com/loi/yjac20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01971360.2019.1598124
https://doi.org/10.1080/01971360.2019.1598124
https://www.tandfonline.com/action/authorSubmission?journalCode=yjac20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=yjac20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01971360.2019.1598124
https://www.tandfonline.com/doi/mlt/10.1080/01971360.2019.1598124
http://crossmark.crossref.org/dialog/?doi=10.1080/01971360.2019.1598124&domain=pdf&date_stamp=2019-06-08
http://crossmark.crossref.org/dialog/?doi=10.1080/01971360.2019.1598124&domain=pdf&date_stamp=2019-06-08

JOURNAL OF THE AMERICAN INSTITUTE FOR CONSERVATION 2
2019, VOL. 58, NO. 3, 180-195 g Routledge
https://dloi.org/10.1080/01971360.2019.1598124 & W Taylor &Francis Group

W) Check for updates

Applying conservation ethics to the examination and treatment of software- and
computer-based art

Deena Engel ©2 and Joanna Phillips ©°

®Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA; bSolomon
R. Guggenheim Museum, New York, NY, USA

ABSTRACT ARTICLE HISTORY
As part of the Solomon R. Guggenheim Museum’s ongoing initiative Conserving Computer-based Received 7 August 2018
Art (CCBA) and the collaborative research between the museum and the Department of Computer ~ Accepted 18 March 2019
Science of New York University’s Courant Institute for Mathematical Sciences, Guggenheim media
art conservators and NYU computer scientists have collaborated since 2014 to examine, document, i

R X R Software-based art;
and treat software- and computer-based artworks from the Guggenheim collection. Based on this computer-based art;
interdisciplinary work and guided by the objective to inform the care for computer-based art within conservation ethics; time-

KEYWORDS

the field of contemporary art conservation, the authors propose new examination, documentation, based media conservation;
and treatment practices for software- and computer-based art that accommodate established media conservation; source
conservation ethics and practice guidelines. code analysis

RESUME

Dans le cadre de linitiative en cours du Solomon R. Guggenheim Museum intitulée « Conserving
Computer-based ART (CCBA) » et de la recherche collaborative entre le musée et le Département
de sciences informatiques du Courant Institute for Mathematical Sciences de la New York
University (NYU), les restaurateurs d'art médiatique du Guggenheim et les informaticiens de la
NYU ont collaboré depuis 2014 pour examiner, documenter, et traiter des oceuvres d’art
numérique et d'art logiciel dans la collection du Guggenheim. Basées sur ce projet
interdisciplinaire et guidées par I'objectif d'informer sur le soin des ceuvres d’art numérique dans
le domaine de la conservation - restauration de l'art contemporain, les auteures proposent de
nouvelles méthodes d'examen, de documentation, et de traitement pour les ceuvres dart
numérique qui respectent les normes d'éthique et de pratique en conservation. Traduit par Eric
Henderson.

RESUMO

Como parte da iniciativa continua do Conserving Computer-based Art - CCBA (Conservagao de
obras de arte digitais) do Museu Solomon R. Guggenheim e a pesquisa colaborativa entre o
museu e o Departamento de Ciéncias da Computacdo do Instituto Courant para Ciéncias
Matematicas da Universidade de Nova York, conservadores de arte e midia do Guggenheim e
cientistas da computacdo da NYU colaboram desde 2014 para examinar, documentar e tratar
obras de arte digitais baseadas em softwares e computadores da colecdo Guggenheim. Com
base nesse trabalho interdisciplinar e orientado pelo objetivo de informar o cuidado com a arte
digital no campo da conservacao da arte contemporanea, os autores propdem novas praticas de
exame, documentacdo e tratamento da arte criada com uso de software e computadores que
acomodam as diretrizes praticadas e a ética estabelecida na conservacdo. Traduzido por Millar
Schisler.

RESUMEN

Como parte de la iniciativa en curso Conservacién del arte creado en computadora (CCBA - siglas
del nombre en inglés Conserving Computer-based Art) del Solomon R. Guggenheim Museum y la
investigacion colaborativa entre el museo y el Departamento de Ciencias de la Computacion del
Instituto Courant de Ciencias Matematicas de la Universidad de Nueva York, los conservadores
de arte de medios del Guggenheim y los cientificos de informética de la NYU han colaborado
desde 2014 para examinar, documentar y tratar obras de arte basadas en software y
computadoras de la coleccion Guggenheim. Apoyados en este trabajo interdisciplinario y
guiados por el objetivo de informar el cuidado del arte creado en computadora dentro del
campo de la conservacién del arte contempordneo, los autores proponen nuevos examenes,
documentacién y practicas de tratamiento para el arte basado en software y computadora que
se adapten a las pautas y ética de conservacion establecidas. Traducciéon: Amparo Rueda.

CONTACT Joanna Phillips €) joannaphil@gmail.com
© American Institute for Conservation of Historic and Artistic Works 2019

http://crossmark.crossref.org/dialog/?doi=10.1080/01971360.2019.1598124&domain=pdf&date_stamp=2019-07-19
http://orcid.org/0000-0003-2703-3075
http://orcid.org/0000-0002-2923-8827
mailto:joannaphil@gmail.com
http://www.tandfonline.com

1. Introduction

Previous collaborations between media art conservators
and computer scientists have identified source code
analysis of software-based art as a tool for technical art
history (Engel and Wharton 2015), and source code
documentation as a conservation strategy (Engel and
Wharton 2014). Building on these fundamental discov-
eries, the research featured in this paper is an initial
attempt to apply established conservation ethics and
practice guidelines to the examination and treatment of
software- and computer-based artworks. The focus of
this study are invasive treatment scenarios, in which
functional and behavioral damages to an artwork cannot
be restored without changing, amending or migrating
the original source code.

Among the emerging community of conservation
professionals who engage with software- and compu-
ter-based art, there has been no established consensus
on the value and status of original source code. A recent
collaborative report questions “whether it was useful to
collect the source code along with a work, or whether
it might in some cases give collectors a false sense of
security, or take up too many resources, possibly without
enough returns ... ” (Dekker and Falcao 2016, 6). Chal-
lenging the value of original source code for an artwork’s
collection and preservation is rooted in two decades of
critical thinking and new ethical frameworks in the con-
servation of contemporary art, and time-based media
conservation in particular. These new frameworks advise
conservation professionals to consider the artist’s intent
in their decision-making (SBMK 1999) instead of focus-
ing exclusively on the conservation of the original object.
The preservation of an artwork’s artist-intended beha-
viors may be privileged over the maintenance of its orig-
inal, technical constituents (The Variable Media
Approach 2003), and conservators’ identification of the
significant, “work-defining properties” of media com-
ponents (Laurenson 2006) may result in the determi-
nation that original components are replaceable with
new or other equipment or technologies (Laurenson
2004; Phillips 2012). With this perspective, prior
explorations of the “significant properties” of software-
based artworks have focused on their appearance, beha-
viors, experience, and other discernible properties (Laur-
enson 2014, 92-94), but have not yet attributed
significance to the original source code itself.

The research in section 2.1 will demonstrate that, in
addition to the work’s discernible behaviors, significance
can be found in the original source code, namely the
artist’s or programmer’s choice of technologies, program-
ming languages and coding styles. Similar to other areas of
art technology, these choices of medium can be deliberate

JOURNAL OF THE AMERICAN INSTITUTE FOR CONSERVATION 181

(artist-intended), or contingent. In both cases, the original
source code may be integral to an artwork’s identity, even
ifitis typically hidden from the audience and rarely part of
the audiovisual or interactive experience.

But if the original source code is considered signifi-
cant and worthy of conservation, it then becomes
imperative to investigate how code-based artworks can
be approached with “informed respect” (AIC 1994, II)
as described by the American Institute for Conserva-
tion’s Code of Ethics and Guidelines for Practice, even
when a conservation treatment requires invasive source
code intervention. The challenge to develop treatment
practices that respect the originality of source code is
magnified by the fact that conservators have to delegate
source code examinations and treatments to trained
specialists such as computer scientists and programmers,
because the expertise to read, interpret, and write source
code is commonly not included in specialized media
conservation training. Between the fields of art conserva-
tion and computer science, however, different core prin-
ciples govern the approach to source code intervention,
including the choice of treatment methods, the handling
of defunct original code, and the documentation of inter-
ventions. Therefore, the adherence to basic conservation
principles cannot be guaranteed, if delegated program-
ming work is not informed and supervised by conserva-
tion professionals.

This cross-disciplinary study, co-authored by a media
art conservator and a computer scientist, looks at a selec-
tion of core principles in art conservation and investi-
gates how they can be applied to guide examination
and treatment practices of software- and computer-
based art. The research was carried out in the course of
the Solomon R. Guggenheim Museum’s ongoing initiat-
ive, Conserving Computer-based Art (CCBA), and its
research collaboration with the Department of Compu-
ter Science of New York University’s Courant Institute
for Mathematical Sciences. The CCBA initiative is
charged with examining, documenting, archiving and
treating the Guggenheim’s collection of software- and
computer-based artworks (Guggenheim Blogs 2016).

2. The application of conservation ethics to
the care of software- and computer-based art

The adherence to national and international professional
guidelines is integral to conservators’ conduct, decision-
making, and daily practice. As a reference framework for
practice development in this investigation, the authors
selected the Code of Ethics, the Guidelines for Practice,
and the Commentaries to the Guidelines for Practice
developed by the American Institute for Conservation
of Historic and Artistic Works (AIC 1994). The authors

182 (&) D.ENGEL AND J. PHILLIPS

selected these documents not only because the research
was carried out within the North American conservation
realm, but because they usefully provide guidance on a
higher level without excluding artworks with non-phys-
ical or non-original components. In contrast, for
example the guidelines of the European Confederation
of Conservator-Restorers’s Organisations (ECCO 2003)
define artwork integrity more concretely as physical
integrity and create more friction for media art conserva-
tion by categorically dismissing the removability of orig-
inal elements (Phillips 2010; Weyer 2010).

It is outside of the scope of this paper to discuss the
genesis of these documents (Appelbaum 2011), the dis-
course on limitations of popular conservation notions
such as minimal intervention and reversibility (Villers
2004; Mufoz Vinas 2009), or ongoing considerations
on the interpretation and application of ethics guidelines
(Clavir 2002; Van de Vall 2009, 2015; Ashley-Smith
2017; Wharton 2018). The aim of this study is instead
to take a widely accepted and established framework as
a starting point for informed practice development in
an emerging new conservation area that has otherwise
seen little orientation along established conservation
guidelines. In the following, six fundamental conserva-
tion principles are selected for application and closer
examination: (1) conservator’s required respect for the
significant original (e.g. the artist’s code); (2) the require-
ment to make informed treatment choices; (3) the
requirement that conservation professionals must super-
vise and take responsibility for delegated conservation
work; (4) a conservator’s approach to loss compensation;
(5) conservation’s requirement to document the con-
dition, examination and treatment of cultural property,
and (6) the notion of preventive conservation.

2.1. Respect for the original

All actions of the conservation professional must be
governed by an informed respect for the cultural prop-
erty, its unique character and significance ... (AIC
1994, 1I)

An artist’s (or commissioned programmer’s) individual
use of technologies and programming languages can be
compared to a painter’s preference for certain painting
materials and does not only determine the experience
of the work, but also manifests a personal artistic prac-
tice. When analyzed, the original code of a software-
based work offers unique insights into an artist’s med-
ium and technique, his or her individual programming
preferences and style, the work’s conceptual and techni-
cal genesis, and may also offer clues in regard to author-
ship, authenticity, and provenance. Additional
important indications of an artist’s intent may be

00 =| deathFeed.asp

deathFeed.asp

name lastname

names names vbCrLf name

lastname = name
Instr(names, "<"

leftlocation = (InStr(names,"<"))-1

names= Mid(names, 1, leftlocation)

Instr(names, "(")
leftlocation = (InStr(names,"("))-1

names= Mid(names, 1, leftlocation)

(451 Words, Page 112, Line 1, Column 1 Tab Size: 4. HTML (ASP)

Figure 1. Screenshot of the original source code for Siebren Ver-
steeg’s Untitled Film Il (2006), with the artist’s source code anno-
tations in gray. Courtesy of the Solomon R. Guggenheim
Museum.

found in the artist’s code annotations, human-readable
comments in the code that may explain intended art-
work behaviors or document dismissed drafts, but are
ignored by the computer at runtime (Figure 1).

The style of coding as creative expression — similar to
the method of paint application - significantly traces the
artist’s conceptual approaches to problem-solving and
artistic path to achieving the intended (and unintended)
behaviors and appearance of the final work. Similar to
other areas of contemporary art conservation, these pro-
duction processes remain significant, even if the artist
outsourced the fabrication of the artwork, e.g. if the
code was not authored by the artist herself, but rather
by her collaborators or programmers.

The following three examples from the Guggenheim
collection serve to illustrate some of these (often invis-
ible) significances, which arguably require a conserva-
tor’s identification and consideration in treatment
planning. In the first example, 6th Eight (2007) by Paul
Chan (b. 1973), the artist made a deliberate choice of
technology, Adobe Flash, that he considers irreplaceable
for his work (Guggenheim Collection Online n.d. Chan).
In the second example, Untitled Film II (2006) by Siebren
Versteeg (b. 1971), the artist preferred a programming
language that is outdated but native to his practice and
prevalent in his oeuvre. In the third example, the web
artwork Brandon (1998-1999) by Shu Lea Cheang (b.
1954), the programming style reveals personal coding
preferences within a multi-authored artwork structure
(Guggenheim Collection Online n.d. Cheang).

2.1.1. Significance of the artist-selected technology
Paul Chan’s Flash animation 6th Eight is projected
onto the gallery floor and shows a window cross with
shadows of small and large fragments floating past
the window (Figure 2). On display, 6th Light could
be mistaken for a black-and-white video: the animated
content is identical in every 14-minute loop. However,
the computer-based piece is running an executable file,
which was created in Adobe Flash. (An executable file,
which is compiled from source code and is not human-
readable, contains the program’s instructions in a for-
mat that the computer can read directly.) The software
application Adobe Flash, an earlier version of Adobe’s
Animate, allows an artist to animate images, shapes
and sounds on a timeline and supports a programming
language called ActionScript.

In the face of currently fading Flash support and
concerns about the sustainability of 6th Eight (the
executable file runs too fast on contemporary compu-
ters), conservators proposed to the artist that the
Flash file could be exported and played back as a
video file. This measure would recreate the identical
visitor experience but make the work independent
from its original software and hardware. For the artist,
however, the Flash technology carries a conceptual
significance and the proposed treatment was not an
option:

Figure 2. Paul Chan, 6th, Light 2007 (2007.31). Projected Adobe
Flash animation, silent, 14 min., dimensions variable. Courtesy of
the Solomon R. Guggenheim Museum.

JOURNAL OF THE AMERICAN INSTITUTE FOR CONSERVATION 183

I think it [the use of Flash] connects to my spartan men-
tality ... I like Flash because of the control, and the pre-
cision, and the dirtiness of it. The roughness of the
vector images. But I also love the fact that when I kick
out that animation, it’s like a 150 K ... I don’t want to
ever imagine me making a work that would take up 10
TB. I want it to be as elegant and as compressed as poss-
ible. (Chan 2016)

The understanding of the conceptual significance of
Flash technology for this artwork informs the treatment
approach: here, emulation may be a more suitable strat-
egy than migration. Emulation is a process of using soft-
ware to imitate another program or environment, for
example, to imitate an older operating system that is
no longer in common use in order to run a program
from that time. In the case of 6th Light, the original
executable file would run within an emulated environ-
ment that simulates how it ran on the artist-provided
legacy computer. Migration, which is the process of
translating the artwork or any of its components from
one technology or programming language to another,
would be a more invasive treatment. This is particularly
true for the case of 6th Light, as any migration, whether
to video or to a different programming environment,
would currently require the choice of a technology very
different from the original Flash.

2.1.2. Significance of the artist-selected
programming language

Siebren Versteeg’s work Untitled Film II (2006) is an
example of a work in which the specific programming
language is significant to the artist. The artwork, creating
the impression of start and end credits of a movie displayed
on two screens, imports live data feeds from the Internet to
display names of newborn infants on one screen and names
of those recently deceased on the adjacent screen (Figure 3).
The background images on the screen are randomly
selected and the soundtrack is programmatically generated,
both in real time. Versteeg wrote the work in the software
application Macromedia Director using the programming
language Lingo. Director was widely used in the 1990s to
build on the Shockwave platform; the Macromedia Shock-
wave player plug-in was first released in 1995. Adobe pur-
chased Director in 2005 and discontinued its sale and
support in February 2017 (Miller 2017). When Untitled
Film IT was written in 2006, Lingo was already not in com-
mon use. However, the artist deliberately chose to write his
work in Lingo:

I still use Lingo. I still use Director ... I mean I think in it
now. When I start thinking about projects I think
through that language and how that might be possible
in that format... The authoring environment is so
self-enclosed and simple, and there’s no external

184 e D. ENGEL AND J. PHILLIPS

..............
........
........
......

delelelelele]«le
.

..... TN
SRR
* o o o o o .

RENREER

ANDREWS, DONNA MAE.
SNOOKS, STANLEY W.

Figure 3. Lab set-up of Siebren Versteeg's Untitled Film Il, 2006 (2006.75). Two internet-connected computers output to two LCD
screens, real-time obituary listings, real-time birth announcements. Courtesy of the Solomon R. Guggenheim Museum.

compilers needed and there’s no external libraries
needed ... I like the solipsism of it ... This is my med-
ium. (Versteeg 2014)

Among programmers, it is common parlance to say that
one has a “mother tongue” programming language; this
resembles an artist’s preference for a particular medium.
A “real” Versteeg artwork is most likely programmed in
Lingo. This lends significance to Lingo in the context of

Artist-provided Computers

Versteeg’s oeuvre in general and Untitled Film II in par-
ticular. In contrast, the same artwork’s Active Server
Pages (ASP) scripts on the server-side that scrape web-
sites for infant and obituary names (Figure 4), have not
been identified to carry any significance beyond deliver-
ing the scraping functionality. Therefore, current treat-
ment testing considers emulation as a strategy to retain
the original Lingo-based Director executable, but seeks

Artist's server Internet Websites

4 5 ~ . b X
Executable
Screen 1
Lingo —) . N) Birih
| Scripts | ummm| Configuration ¢ ASP file A
Names
as .txt
Executable
Screen 2
Lingo —) = : . » Obiturary
| Scripts | (um— Configuration ‘ ASP file) e
Names %
as .txt
~ . e . L)

Figure 4. This functional diagram of Siebren Versteeg's Untitled Film Il (2006) visualizes the anatomy of the artwork based on the
findings of the source code analysis. Courtesy of the Solomon R. Guggenheim Museum.

JOURNAL OF THE AMERICAN INSTITUTE FOR CONSERVATION 185

*** don-monster has j

[Mixup x

® brandon.guggenheim.org/mooplay/mixup.ht

*** X has joined the chat area
*** user2 is now known as emma

take a number, take a name

don-monster

Figure 5. Screenshot of Shu Lea Cheang, Brandon, 1998-1999 (2005.44). Interactive networked code (HTML, Java, Javascript and server
database). The work is publicly accessible at http://brandon.guggenheim.org. Courtesy of the Solomon R. Guggenheim Museum.

to migrate the ASP scripts, which have become defunct
and as a technology pose a security concern, to the pro-
gramming language Python. Python is widely used and
supported for web scripting.

2.1.3. Significance of the artist’s or programmer’s
coding style

Shu Lea Cheang’s web artwork Brandon (1998-1999),
which was commissioned by the Guggenheim in 1998
and restored in 2016/2017 as part of the current CCBA
initiative (Guggenheim Blogs 2017), is a sprawling co-
authored web project that tells the tragic story of trans-
man Brandon Teena and hosts a wealth of related stories,
resources and interactive features for public engagement
online (Figure 5). Brandon was created using a range of
technologies and languages, including Java Applets,
Hypertext Markup Language (HTML), JavaScript, Perl
scripts and a MySQL database.

>GARLAND</

Within its HTML, Brandon features a particular
choice of coding style: the font sizes, colors and effects
as well as page layouts were all specified within the
HTML of the web pages (Figure 6) and not captured in
separate files as is commonly done today using cascading
style sheets (CSS). CSS is a more efficient technology and
supports uniformity for a website in its “look and feel” as
it supports the application of style rules across many
pages of content. If the layout and formatting is done
without CSS and inside the HTML, larger amounts of
coding time are required to implement individual code
changes across the site. Although CSS was available
when Brandon was created, its programmers decided
against its use, possibly because the technology was nas-
cent at the time or perhaps because styling uniformity
across Brandon was not an aesthetic priority for the artist
and her collaborators. As a consequence, during the
2016/2017 restoration of Brandon, necessary repairs to

>
TEXT="blue" LINK="#FFFFFF" VLINK="#FFFFFF" BGCOLOR="#000000" BACKGROUND="pix/aqua.jpg">

size=4>

Figure 6. Screenshot of the original source code for Shu Lea Cheang'’s Brandon: The font color, link colors and background are specified

within HTML. Courtesy of the Solomon R. Guggenheim Museum.

http://brandon.guggenheim.org

186 e D. ENGEL AND J. PHILLIPS

color: blue;
background-color: #000000;
background-image: url("pix/aqua.jpg");

{
color: #FFFFFF;

NN N R

POOVWONOUIAWN

tvisited{
color: #FFFFFF;
Iy

il
font—family: Times New Roman;
font-size: 14px;
}

</ >

p
7
2
2
2
2
3
3
3

2
=
33

Figure 7. Screenshot of the 2016/2017 restoration code for Shu Lea Cheang’s Brandon: To restore font sizes and colors in keeping with
the original style of coding, style elements are added to each HTML file without external CSS pages. Courtesy of the Solomon

R. Guggenheim Museum.

its layout and font styling followed the original coding
style and were executed within the HTML (Figure 7)
instead of introducing modern-day CSS (Engel et al.
2018).

2.2. Informed choice of treatment methods

The conservation professional must strive to select
methods and materials that ... do not adversely affect
cultural property or its future examination, scientific
investigation, treatment, or function. (AIC 1994, VI)

As these examples illustrate, recognizing the unique
characteristics of an artist’s code determines whether
that code can be considered replaceable in the event of
dysfunction and deprecation, or whether it should be
considered preservation-worthy.

Even if source code intervention (e.g. as part of a
migration from one programming language to another)
is determined necessary to restore an artwork, treatment
options can range from minimal intervention to complex
restoration. The extent, nuance, and effect of the invasive
treatment should and can be a result of deliberate and
ethically informed conservation planning. To minimize
the degree of code intervention, for example, treatment
planning can privilege the choice of a more modern ver-
sion of the original programming language over repla-
cing it with an entirely different programming
language. Secondly, if the migration to a different pro-
gramming language cannot be avoided, a preferred des-
tination language would be a language similar in syntax
and structure to the original; for example, original Java
code is better translated to JavaScript than to Python,
because the latter is very different in syntax and struc-
ture. A migration to Python would necessitate many
more programming decisions that could distance the res-
toration code from the original expression, tone and style
of coding. For the 2016/2017 restoration of Brandon, it

was decided to replace the Java applets, which are no
longer supported by modern browsers, with GIF images
and JavaScript. GIF images and JavaScript were not only
chosen because they are supported by modern browsers,
but also because they are already found in other areas of
Brandon and are therefore native technologies to the
work (Guggenheim Blogs 2017).

As is common practice in other areas of art conserva-
tion, an informed choice of treatment methods calls for
case-by-case decision-making (Appelbaum 2007). This
remains true for software-based artworks, even if recent
initiatives promote the batch treatment of groups of digi-
tal objects in a uniform way, for example by executing
multiple artworks with shared software and hardware
dependencies in the same emulated legacy environment
(Rechert, von Suchodoletz, and Welte 2010; von Suchodo-
letz, Rechert, and van der Werf 2012; Espenschied et al.
2013; Rechert, Falcao, and Ensom 2016; Espenschied
2017). This approach can be especially relevant, where
high quantities of complex digital objects have to be main-
tained, for example in the context of library and archival
collections. However, for art conservation purposes, the
application of one default treatment method (such as
emulation) for groups of artworks may not always satisfy
a conservator’s requirement to truthfully reinstate an indi-
vidual artwork’s defining properties, such as its colors,
speed, movement or other behaviors.

Case-by-case treatment planning is critically
informed by the previous identification of these work-
defining properties: “Before any intervention, the conser-
vation professional should make a thorough examination
of the cultural property and create appropriate records”
(AIC 1994, Guideline 25). A critical examination method
for code-based works is source code analysis; human
observation alone cannot sufficiently identify or quantify
many potential behaviors, such as open durations,
randomization or generative features. Furthermore,

functions that are already compromised or defunct
would no longer be discernible to the viewer, but can
be identified by reading the source code. For example,
source code analysis of Shu Lea Cheang’s Brandon
revealed deprecated <BLINK> tags in the HTML code
that used to make individual words in Brandon blink.
In contemporary browsers, which no longer recognize
<BLINK> tags, these words were simply displayed as sta-
tic fonts; without analyzing the code, the missing blink-
ing behavior would not have been detected by the viewer.

When planning a software migration, the sustainabil-
ity of a destination technology or language should be
considered, similar to the consideration of the stability
and aging properties of an adhesive prior to applying it
to a work of art. To support the maintenance of the
work and to ensure that future treatments are not inhib-
ited, the selected technology and programming language,
including its libraries, and the format types of media
assets, should be widely used, supported, understood,
and documented. Programmers carrying out a treatment
should refrain from introducing obscure or custom sol-
utions that will likely require custom interventions or
migrations in the future.

Informed treatment planning should also address
anticipated changes in technology. In the case of the
Brandon restoration, for example, research identified
legacy HTML tags in the artwork that were still function-
ing at the time of the 2016/2017 restoration, but were
scheduled to be deprecated within the next 5 years.
These HTML tags were then migrated as part of this
treatment to prevent the breakdown of their functional-
ity in the near future.

2.3. The supervision challenge: delegating
treatment, but not the responsibility

The conservation professional shall practice within the
limits of personal competence and education ... (AIC
1994, IV.)

The conservation professional is responsible for work
delegated to other professionals... Work should not
be delegated or subcontracted unless the conservation
professional can supervise the work directly ... (AIC
1994, Guideline 8)

Conservators who are responsible for the care of software-
and computer-based art have rarely received training in
reading and writing code. Therefore, they commonly
have to delegate the examination and treatment of these
works to other professionals. Supervising this delegated
work can prove extremely challenging, if the conservation
professional has little understanding of a programmer’s
treatment approach. For example, while treatment choices
to retain all or parts of the original code or technology

JOURNAL OF THE AMERICAN INSTITUTE FOR CONSERVATION 187

seem intuitive to conservators, they may collide with
established principles in programming and computer
science, as conservators and programmers value and
evaluate source code in different ways. To guarantee a
conservation-minded decision-making process and
desired treatment outcome, it is key for professionals in
both disciplines to understand each others approaches
and collaborate effectively.

2.3.1. Different approaches between disciplines
Conservators are inclined to look for significances in the
artist-selected technology, programming language, and
artist’s coding style to determine treatment strategies.
In contrast, programmers judge code primarily by its
quality. For example, programmers will often judge
code by its elegance (whether it is well written); whether
it is concise (as opposed to verbose); whether it makes
best use of the hardware it is intended to run on; and
whether the code is clearly written and appropriately
annotated. In computer programming, supervisors and
colleagues will often conduct code reviews to evaluate
and assess the quality of code while it is under develop-
ment and upon completion as a way to assist program-
mers and to give feedback. This is analogous to having
a professional editor review a manuscript for publication.
When programmers strategize code intervention to treat
defunct code, their prime criterion in choosing a technol-
ogy or programming language is not necessarily its long-
term sustainability or likeness to the original code or
language, but the ability of the technology or language
to offer a smooth and efficient execution of the desired
functions within a reasonable development timeframe.
As different programming languages are designed to
serve different purposes and support different function-
alities, the quantitative and qualitative efficiency of
expression can be higher in one language over another.

For artwork examinations in this research, computer
scientists and programmers had to learn to read and
evaluate code through a conservator’s eyes, i.e. to respect
the unique style and character of the code as it was writ-
ten by the artist regardless of the quality of the code itself.
Programmers collaborating with conservators on the
treatment of these artworks had to be reassured that
they would not be judged primarily by the quality, pro-
gramming elegance and efficiency of the finished restor-
ation code according to standards that they are
accustomed to outside of the art world, but rather by
their ability to interpret and treat a work of software-
based art in a way that is respectful of and faithful to
its original characteristics, i.e. not just in regard to dis-
cernible behaviors of the work, but to its underlying
technologies.

188 D. ENGEL AND J. PHILLIPS

2.3.2. Developing common ground between
disciplines

When planning a conservation treatment, the concerns
and preferences of both disciplines, conservation and
computer programming, have to be balanced and the
advantages of each possible solution have to be weighed
against its disadvantages. To avoid misunderstandings
and to build a shared language, both sides must commit
to mutual teaching and ongoing exchange.

Cross-disciplinary communication in this research
was cultivated through formal and informal exchange:
At the beginning of each academic semester, computer
science students new to the conservation field were intro-
duced to conservation principles, and at the end of each
semester, the students and programmers formally pre-
sented and discussed their examination findings and
treatment progress with an audience of conservators,
curators, and other collection care professionals. In
turn, the computer scientists introduced media conser-
vators to concepts common to their field, with discus-
sions that guided all phases of the case studies. All
programming treatments were conducted in the Gug-
genheim media conservation lab, which allowed conser-
vators and computer scientists to work together closely
and in real time, to make decisions collaboratively and
to ensure proper treatment documentation.

A prime tool for making informed treatment choices
collaboratively has been prototyping and comparing
different possible programming solutions together. The
approach of prototyping is analogous to micro-testing
the efficiency of a proposed solvent or consolidant in
the treatment planning of an artwork; microscopic
areas of the artwork that represent certain treatment
challenges are selected for testing. For software-based
art, the relevant code is copied into a separate file outside
of the artwork and amended or migrated. Building pro-
totypes, e.g. in different programming languages, allows
programmers to test their ideas and serves as a foun-
dation for discussion with conservators and artists to
devise an appropriate treatment plan.

Particular attention should be given to the assessment of
these prototypes. Complementary to visual A-B compari-
sons, performance evaluations and other crucial qualitative
assessments, programmers can write code to measure and
evaluate results quantitatively, including the speed of
execution and other aspects of an artwork that cannot be
identified or measured by human observation.

Only through excellent communication and close col-
laboration between conservators and programmers is it
possible to apply the same conservation standards to
the examination and treatment of software-based
works as is established for other works of art.

2.4. Compensation for loss: detectability and
reversibility

Any intervention to compensate for loss should be
documented in treatment records and reports and
should be detectable by common examination methods.
Such compensation should be reversible and should not
falsely modify the known aesthetic, conceptual, and
physical characteristics of the cultural property,
especially by removing or obscuring original material.
(AIC 1994, Guideline 23)

Conservators strive to compensate for “physical loss to the
material of a cultural property” or its “loss of original
appearance” and to restore its “structural stability, visual
unity, and/or function and use” (AIC 1994, Guideline 23,
Commentary). Any compensatory measure should be
detectable and reversible; detectable to prevent a viewer’s
deception of the condition and value of a restored work,
and reversible because other treatments may become
necessary or favored in the future, and the risk of damage
should be minimized. (While the practical feasibility of
treatment reversibility has been much debated in the
world of tangible cultural heritage, it is quite achievable
in the treatment of digital artworks, where the restoration
should be carried out on a digital, exact copy of the work.)

The 2016/2017 restoration of Brandon served as a case
study to develop measures that would enable the detect-
ability and reversibility of compensatory source code
intervention. First and foremost, defunct original code
in Brandon was never deleted. Regardless of whether
an artwork is migrated to a different technology and pro-
gramming language, or if the programming language is
maintained and code amendments take place within
the original code, a new copy and version should be cre-
ated to preserve the original or previous version of the
artwork. Thereby, every treatment becomes fully revers-
ible. Furthermore, in the new restoration version,
defunct or deprecated original code should not be
deleted whenever possible. Instead, it should simply be
deactivated by “commenting it out,” i.e. by inserting
human-readable code annotations that deactivate the
execution of lines or blocks of code and label original
code (Figure 8). To reverse treatments within the restor-
ation version, the newly added code can also be deacti-
vated by commenting it out, and the old code can be
reactivated by deleting the restoration comments.

The method of code annotation also serves the purpose
of making a treatment detectable. During the treatment of
Brandon, headers were created for each of the treated files
that specified the restoration project, author, date and
purpose of intervention, and comments before and after
new blocks of code were added to indicate “NEW
CODE START” and “NEW CODE END” (Figure 9).

JOURNAL OF THE AMERICAN INSTITUTE FOR CONSERVATION 189

bodydevian

FFFF" LINK= FFFFF™ | FFFF" BGCOLOR-

Figure 8. Screenshot of the 2016/2017 restoration code of Brandon. The original but defunct code is not deleted but simply deactivated
by commenting it out and labeling it as original code. Courtesy of the Solomon R. Guggenheim Museum.

2.5. Documentation examiner’s annotation of the analyzed source code, (2)
The conservation professional has an obligation to pro- narrative documentation, (3) visual illustration such as
duce and maintain accurate, complete, and permanent charts and graphs, and (4) unified markup language
records of examination, sampling, scientific investi- (UML) (Engel and Wharton 2015). In this current
gation, and treatment. (AIC 1994, Guideline 24) research, further methods and practices have been devel-

oped and tested to create records of artwork examination

Previous interdisciplinary research has identified four
and treatments.

methods of documenting software-based art: (1) the

@ « bluehead.htm!

bluehead.htm!

3 Line 1, Column 1 Tab Size: 4

Figure 9. Screenshot of the 2016/2017 restoration code of Brandon. A header in the file identifies the author, date, project and purpose
of the code intervention. Courtesy of the Solomon R. Guggenheim Museum.

190 D. ENGEL AND J. PHILLIPS

birthFeed_

201804237162914Z-001

birthFeed_Annotated.txt

URLSTRING = "http://www.babycenter.com/popularBabyNames.htm?startIndex="&
cstr(getRandomNumber(1, 5000))&"&year=2014"

' // Calls random number between 1 and 5000, inserts into URL, URL goes to
corresponding page from the list of popular baby names from 2014

set hc = new httpcache
with hc

.URL = URLSTRING
end with
strRetval = hc.data
set hc = nothing

''response.write URLString

Response.Write extractbabies(strRetval)

Figure 10. Screenshot of Siebren Versteeg's “birthfeed” ASP scripts. In line 43, the examining programmer explains how the code calls
for the baby names. Courtesy of the Solomon R. Guggenheim Museum.

2.5.1. Creating meaningful examination records
When examining the source code of a software-based
artwork, a copy of the original code is created. The exam-
ining computer scientist or programmer annotates this
“examination version” with comments in the code that
explain how individual lines or blocks of code define
rules, functions and behaviors of the artwork (Figure
10). The comments may indicate, for example, whether
code has become defunct or deprecated and is no longer
executed; whether it has never been active and may con-
stitute an early, abandoned draft of an idea; whether it
has been adopted from previous or other projects; or
whether it was coded by different collaborators. Previous
research concludes that “source code and the comments
in the source code are the most important documen-
tation” both for software engineers and the museum
(Engel and Wharton 2015). And indeed, source code
annotation as a documentation method offers the most
granular record of examination and can be critical for
future programmers to understand and interpret an art-
work’s code, especially if the programming languages
used are no longer supported or commonly known.
While source code annotation was also integral to the
examination of case studies in this research, concern
arose that not all target audiences could access or interpret
the documentation inside the code. Since decision-mak-
ing about the variability and permissible change and treat-
ment of a software-based artwork still lies with

conservators, curators and other collection stewards,
who are commonly code-illiterate, an additional docu-
mentation method was sought that digests and interprets
programmers’ findings and offers higher-level access to
information that is critical to collections care.

To achieve this goal, a worksheet known as the Iden-
tity Report, which was developed at the Guggenheim to
document time-based media (Phillips 2015), was
expanded and adjusted to capture software- and compu-
ter-based works in particular. This documentation
includes an art historical and technical contextualization
of the artwork; the work’s anatomy and constituents in
relationship to each other; the intended behaviors and
functions; its installation and display parameters; the
work’s aesthetic, conceptual and functional software
and hardware dependencies; information about the
development environment and history; the history of
post-completion modifications and change; the con-
dition and risk assessment, and the short, mid and
long term prognosis for necessary maintenance.

To complement this written and illustrated documen-
tation, a further documentation method proved extre-
mely valuable in this study: narrated screen recording.
Screen recordings, or video screen captures, are digital
recordings of the audiovisual computer screen output
that can be accompanied by the examiner’s live audio
narration. This documentation method served a variety
of examination goals, e.g. to create an audiovisual

View insert_Modfy Text_Commands _Control

JOURNAL OF THE AMERICAN INSTITUTE FOR CONSERVATION 191

©F a i WG huzsm QS
| Essomas- o

oo

soulnor &

Figure 11. Screenshot of Paul Chan’s 6th Light viewed in its native production environment Adobe Flash. Courtesy of the Solomon

R. Guggenheim Museum.

reference of an artwork’s intended behaviors in its native
display environment, including color rendering, move-
ments and speed; to document an artwork’s interactive
on-screen behaviors; to create an audiovisual record of
condition issues such as missing functions, and to docu-
ment a work’s genesis in its native production environ-
ment. One example is the creation of a narrated
navigation of Paul Chan’s 6th Light in Adobe Flash.
The examining computer science student navigated
through the Flash project while explaining how the artist
created large libraries of custom shapes, arranged a selec-
tion of these shapes on a complex timeline, animated the
movement of the shapes passing the window cross and
created the effect of dusk and dawn (Figure 11).

2.5.2. Documentation of conservation treatments
During treatment, the conservation professional should
maintain dated documentation that includes a record or
description of techniques or procedures involved,
materials used and their composition, the nature and
extent of all alterations, and any additional information
revealed or otherwise ascertained. (AIC 1994,
Guideline 27)

All treatments of software- and computer-based art,
whether they involve the manipulation of original
source code or not, can effectively be documented
with written and illustrated treatment reports as estab-
lished in the field of art conservation. As soon as code
intervention is part of the treatment, however,
additional forms of documentation are called for that

offer precise location mapping of these interventions.
Artist’s source code can consist of hundreds or even
thousands of discrete files, each of which can contain
hundreds or more of lines of code, and restoration
intervention can take place across many of these files.
The documentation method of code annotation, as
described under 2.4, Compensation for Loss, allows
conservators to detect treatment intervention within
the code and makes restoration code distinguishable
from original artist’s code. The searchability of treat-
ments across files, however, depends on the use of con-
trolled vocabularies in these code annotations. In the
2016/2017 restoration of Brandon, great focus was
placed on standardizing annotation terminology and
thereby enhancing the searchibility of restoration
code. However, as long as this terminology is not stan-
dardized within the greater field of conservation, future
conservators or programmers would not know the key-
words to search for when looking for previous
treatments.

A solution to this problem is the parallel use of ver-
sion control software, for example the application Git
(Git Website n.d.). Version control systems are essential
in the software development industry and are used to
track changes in computer files and coordinate work
on these files by multiple programmers. All code changes
that are submitted to Git are automatically stamped with
the time and the author. The programmer can add
decision-making rationale for each coding step, and
other members of the conservation team can review

192 (&) D.ENGEL AND J. PHILLIPS

the progress by running the software and flagging behav-
ioral bugs that require corrections in the code. Changes
to the code are easily searchable and accessible through
Git’s graphical user interface and the old original and
new restoration code can be easily compared through
split screen functions. Git also supports the parallel
exploration of multiple coding solutions while allowing
all of the participants to work on the most current ver-
sion of the source code.

At the Guggenheim, Git was already in use by the IT
and museum website departments, so Brandon’s treat-
ment documentation could easily be added to the Gug-
genheim Git implementation. The institutional
integration of these insular conservation records seemed
crucial to minimize the risk of loss.

As a final measure of treatment documentation, the
method of screen recording (see 2.5.1) again proved
extremely valuable. It was used to document Brandon’s
audiovisual and interactive behaviors for the before,
during and after treatment states. In Brandon’s case,
the decision was made to also create a narrated post-
treatment screen navigation of the entire website to pro-
vide scholars and general audiences with a full overview
of the historic work, as its navigation is not intuitive for
many contemporary users who have reported to miss
large parts of the complex work. This narrated screen
navigation can be found online (Guggenheim Blogs
2017).

2.6. Preventive conservation

The conservation professional should recognize the
critical importance of preventive conservation as the
most effective means of promoting the long-term pres-
ervation of cultural property. (AIC 1994, Guideline 20)

Preventive conservation aims to create appropriate sto-
rage, access, and display conditions for artworks to pre-
vent their deterioration or damage, and the need for
invasive conservation intervention: “In ‘preventive’ (or
‘indirect’) preservation treatments, the object is not
touched, but left in a different environment” (Mufoz
Vinas 2005, 22). Applied to software- and computer-
based art, obvious measures of preventive conservation
include secure, redundant and access-regulated server
storage. In addition, proactive measures are necessary
to create an environment for these works that enables
their future access, examination, and treatment.

As with other types of contemporary art, the acquisition
process of software- and computer-based artworks is a key
moment for caretakers to collect relevant components and
information to ensure their sustained collection life.
Obtaining the uncompiled, human-readable source code
in addition to the compiled, machine-readable executable

file that is needed to run the artwork (the equivalent of
an exhibition copy in video art) is perhaps the most crucial
act of preventive conservation. It became evident in this
research that the source code is not only essential for the
examination and future treatment of a work, but a key
record of self-documentation. To a code-literate person,
the code acts like a score that precisely reveals the rules
and behaviors of an artwork, even if it fails to run, e.g.
due to hardware breakdown or software obsolescence.

If the museum is unable to obtain the uncompiled
source code, it could in some cases extract the code by
decompiling the artist-provided executable. However,
retrieving the source code through decompilation has a
number of disadvantages. Firstly, any comments in the
code, such as the artist’s or programmer’s annotations
and any unused code, are irretrievably lost in the compi-
lation process and not present in the decompiled code. Sec-
ondly, recompiling previously decompiled code, e.g. if the
source code needs treatment such as code amendment or
migration, can lead to a risk of shifts in the intended art-
work behaviors or functionality. And last but not least,
decompilation requires decompiler software that is specific
to the programming language and version (as well as the
operating system in some cases) and also becomes obsolete
and likely unavailable over time. This is true for two art-
works, which the Guggenheim acquired in 1989 and
1999 as executables only, without their source code. As
no appropriate decompilers could be found during this
research, it was impossible for the computer scientists to
decompile the executables. As a result, the defining beha-
viors of both works could not be identified and documen-
ted. This example shows that if compiled executables are
acquired, it is advisable to also source the appropriate
decompiler and compiler software immediately. To sup-
port reconstructive treatments in the future, compiler soft-
ware should be sourced even if the uncompiled source code
is obtained. In addition, copies of integrated media assets
such as images, graphics, and videos should be extracted
immediately upon acquisition and stored outside of the art-
work. Caretakers should also source any artwork-support-
ing software, including the required software and code
libraries, as soon as the work enters the collection; in the
case of the above-mentioned examples by Paul Chan and
Siebren Versteeg, this means the legacy versions of
Adobe Flash and Macromedia Director.

At the time of acquisition, a full source code analysis is
not always possible; basic intake-documentation, how-
ever, should include the identification of the work’s pro-
gramming languages, its relevant software libraries and
technologies, and its hardware and software environ-
ments including the operating system.

An additional valuable historic reference for future
conservators, curators, and programmers is created by

recording the artwork running in its native display
environment at the point of acquisition, when all func-
tions and behaviors are still intact as intended by the artist.

3. Conclusion and outlook

This research has shown that core conservation prin-
ciples established in the AIC’s Code of Ethics and Guide-
lines for Practice provide useful guidance for the practice
development in the emerging field of software- and com-
puter-based art conservation. This study demonstrated
further that treatment planning of these works should
not just be informed by an artwork’s discernible beha-
viors, but by functional, conceptual, and other signifi-
cances identified in the underlying, original source
code, such as the artist’s choice of technologies, pro-
gramming languages, and coding style.

As a product of this cross-disciplinary collaboration,
practical developments include the implementation of
code annotation to make treatment interventions detect-
able and reversible, and the introduction of new docu-
mentation methods, for example screen recording and
version control software, to capture code-based artworks
and their conservation treatments. As proactive
measures of preventive conservation, the authors advise
on components and information to collect when acquir-
ing software- and computer-based art.

Among the six investigated conservation principles,
one notion that remains most challenging for implemen-
tation is the requirement of conservation professionals to
supervise delegated conservation work. In the case of
software- and computer-based work, the specialist exper-
tise may be so removed from current conservation skill-
sets that supervision is not easily realized. Cross-
disciplinary communication can be especially challen-
ging, as conservators and computer scientists often use
different terminology and gravitate towards different
treatment approaches. In this research, it has been key
for both disciplines to learn about each others’ principles,
priorities, and decision-making processes over the course
of several years. But without this commitment to develop
a mutual language, conservation professionals may cur-
rently not be able to communicate and collaborate effec-
tively with computer scientists and programmers to
ensure that conservation ethics inform and guide the
examination and treatment of these works.

With an increasing volume of contemporary art being
produced in software- and computer-based media, and
more of these works entering collections, the authors rec-
ommend that art conservation programs respond to the
increasing need for specialized expertise and adjust their
curricula and pre-program requirements accordingly.
Ideally, conservators of software- and computer-based

JOURNAL OF THE AMERICAN INSTITUTE FOR CONSERVATION 193

art would combine training in programming (e.g. by
means of an undergraduate degree in computer science)
with a graduate degree in art conservation. To enable
conservation supervision of delegated programming
work, emerging conservators of contemporary art should
be trained within their curriculum to understand basic
principles and approaches in computer programming.
Similar interfaces between conservation and other disci-
plines, such as art history or conservation science, are
already being cultivated in conservation training. Only
by expanding this cross-disciplinarity can the field of
art conservation embrace the next generation of contem-
porary art production.

Acknowledgements

The authors would like to thank the artists Paul Chan, Sieb-
ren Versteeg, and Shu Lea Cheang for their support of this
research. Further thanks go out to all current and former
supporters of and contributors to the CCBA initiative and
Guggenheim-NYU research collaboration since 2014: At
the Solomon R. Guggenheim Museum we would like to
thank Lena Stringari, Deputy Director and Chief Conserva-
tor; Jonathan Farbowitz, Fellow for the Conservation of
Computer-based Art; Alexandra Nichols, former Kress Fel-
low for Time-based Media Conservation; Brian Castriota,
former Samuel H. Kress Fellow in Time-based Media Con-
servation; Amy Brost, former Andrew W. Mellon Graduate
Intern for Time-based Media Conservation; Lia Kramer, for-
mer Polonsky Intern for Digital Humanities, and Jiwon Shin,
former summer intern for Time-based Media Conservation.

At New York University’s Courant Institute for Math-
ematical Sciences, particular thanks go to the computer
science students and graduates who contributed to the source
code analysis, treatment prototyping and treatment of Gug-
genheim collection works: Jiwon Shin, Aarti Chandrakant
Bagul, Shan Shao, Jiwon Shin, Michelle Liu, Vivian Peng,
Emily Hua, Caroline Slason, Mia Matthias, Emma Dickson,
Jillian Zhong, Kaitlin Gu, Justin Pak, Karl Toby Rosenberg,
Yonatan Medina, Alejandra Trejo Rodriguez, Emily Fong,
and Xincheng Huang.

The CCBA initiative at the Guggenheim would not be poss-
ible without the generous support by the Carl & Marilynn
Thoma Art Foundation, the New York State Council on the
Arts with the support of Governor Andrew Cuomo and the
New York State Legislature, Christie’s, and Josh Elkes.

We would further like to thank our colleagues who took
time to review this publication: Professors Ernest Davis and
Craig Kapp, Department of Computer Science, Courant Insti-
tute of Mathematical Sciences, New York University; Prof.
Glenn Wharton, Department of Museum Studies, New York
University; Lena Stringari and Jeffrey Warda, Conservation
Department, Solomon R. Guggenheim Museum; and Agathe
Jarczyk, Department of Conservation-Restoration, Bern Uni-
versity of the Arts.

Disclosure statement

No potential conflict of interest was reported by the authors.

194 e D. ENGEL AND J. PHILLIPS

Notes on contributors

Deena Engel is a Clinical Professor in the Department of Com-
puter Science at the Courant Institute of Mathematical Sciences
of New York University as well as the Director of the Program
in Digital Humanities and Social Science. She teaches under-
graduate computer science courses on web and database tech-
nologies, as well as courses for undergraduate and graduate
students in the Digital Humanities and the Arts. She also super-
vises undergraduate and graduate student research projects in
the Digital Humanities and the Arts, and collaborates on
research on the conservation of software-based art. She received
her master’s degree in comparative literature from SUNY-Bin-
ghamton and her master’s degree in computer science from
the Courant Institute of Mathematics at New York University,
NY, USA.

Joanna Phillips is the Senior Conservator of Time-based Media
at the Solomon R. Guggenheim Museum in New York, where
she founded the media art conservation lab in 2008. At the Gug-
genheim, Phillips has developed and implemented new strat-
egies for the preservation, reinstallation, and documentation
of time-based media works. Phillips publishes and lectures on
this topic internationally. She founded and heads the Guggen-
heim’s ongoing initiative Conserving Computer-based Art
(CCBA) and is a founding co-organizer and multiple host of
the EMG conference series TechFocus. Phillips also co-orga-
nized the international symposium “Collecting and Conserving
Performance Art” in Germany. Prior to her Guggenheim
appointment, Phillips specialized in the conservation of con-
temporary art at the Swiss Institute for Art Research in Ziirich
and explored the challenges of media art conservation as a
research conservator in the Swiss project “AktiveArchive.” Phil-
lips holds a master’s degree in paintings conservation from the
Hochschule der Bildenden Kiinste in Dresden, Germany.

ORCID

Deena Engel
Joanna Phillips

https://orcid.org/0000-0003-2703-3075
http://orcid.org/0000-0002-2923-8827

References

AIC (American Institute for Conservation of Historic and
Artistic Works). 1994. Code of Ethics and Guidelines for
Practice. Accessed August 1, 2018. http://www.conservation-
us.org/ethics.

Appelbaum, B. 2007. Conservation Treatment Methodology.
Oxford: Elsevier Butterworth-Heinemann.

Appelbaum, B. 2011. “Conservation in the 21st Century: Will a
20th Century Code of Ethics Suffice?” In Ethics & Critical
Thinking in Conservation, edited by Pamela Hatchfield, 1-10.
Washington, DC: American Institute for Conservation of
Historic & Artistic Works.

Ashley-Smith, J. 2017. “A Role for Bespoke Codes of Ethics.”
In ICOM-CC 18th Triennial Conference 2017 Copenhagen,
Preprints, edited by Janet Bridgland, 1-10. Paris: ICOM.

Chan, P. 2016. Paul Chan, Artist interview by Joanna Phillips,
Deena Engel, Lauren Hinkson, Kaitlin Gu, Jillian Zhong,
and Amy Brost at the artist’s Badlands Studio, New York,
NY, USA, March 11, 2016. Audio recording, Conservation
Department Records, Solomon R. Guggenheim Museum.

Clavir, M. 2002. Preserving What is Valued: Museums,
Conservation, and First Nations. Vancouver: UBC Press.
Dekker, A., and P. Falcao. 2016. Interdisciplinary Discussions
about the Conservation of Software-Based Art. A report
written by PERICLES Project partners in collaboration
with participants of the Community of Practice (CoP) on
Software-Based Art. Accessed August 1, 2018. http://

pericles-project.eu/uploads/files/PERICLES_SBA_CoP_
report_2017_FINAL.pdf.

ECCO (European Confederation of Conservator-Restorers’s
Organisations). 2003. E.C.C.O. Professional Guidelines
(II) - Code of Ethics. http://www.ecco-eu.org/fileadmin/
user_upload/ECCO_professional_guidelines_IT.pdf
(accessed December 28, 2018).

Engel, D., L. Hinkson, J. Phillips, and M. Thain. 2018.
“Reconstructing Brandon (1998-1999): A Cross-disciplin-
ary Digital Humanities Study of Shu Lea Cheang’s Early
Web Artwork” Digital Humanities Quarterly 12 (2).
Accessed December 28, 2018. http://digitalhumanities.org/
dhq/vol/12/2/000379/000379.html.

Engel, D., and G. Wharton. 2014. “Reading Between the Lines:
Source Code Documentation as a Conservation Strategy for
Software-Based Art.” Studies in Conservation 59: 404-415.

Engel, D., and G. Wharton. 2015. “Source Code Analysis as
Technical Art History.” Journal of the American Institute
for Conservation 54: 91-101.

Espenschied, D. 2017. Preservation by Accident is not a Plan:
Vint Cerf and Dragan Espenschied in Conversation.
Accessed August 1, 2018. http://rhizome.org/editorial/
2017/may/30/preservation-by-accident-is-not-a-plan/.

Espenschied, D., K. Rechert, I. Valizada, D. von Suchodoletz,
and N. Russler. 2013. “Large-Scale Curation and
Presentation of CD-ROM Art.” iPRES 2013: 1-8. Accessed
August 1, 2018. http://purl.pt/24107/1/iPres2013_PDF/
Large-Scale%20Curation%20and%20Presentation%200f%
20CD-ROM%20Art.pdf.

Git Website. n.d. Accessed August 1, 2018. https://git-scm.
com.

Guggenheim Blogs. 2016. How the Guggenheim and NYU are
Conserving Computer-Based Art—Part 1. Blog entry by
Caitlin Dover, October 26, 2016. Accessed August 1, 2018.
https://www.guggenheim.org/blogs/checklist/how-the-gugg
enheim-and-nyu-are-conserving-computer-based-art-part-1.
How the Guggenheim and NYU Are Conserving Computer-
Based Art—Part 2. Blog entry by Caitlin Dover, November 4,
2016. Accessed August 1, 2018. https://www.guggenheim.
org/blogs/checklist/how-the-guggenheim-and-nyu-are-conse
rving-computer-based-art-part-2.

Guggenheim Blogs. 2017. Restoring Brandon, Shu Lea Cheang’s
Early Web Artwork. Blog entry by Phillips, J., Engel, D.,
Dickson, E. and J. Farbowitz, May 16, 2017. Accessed
August 1, 2018. https://www.guggenheim.org/blogs/check
list/restoring-brandon-shu-lea-cheangs-early-web-artwork.

Guggenheim Collection Online. n.d. Chan. Paul Chan, 6th.
Accessed August 1, 2018. https://www.guggenheim.org/
artwork/20625.

Guggenheim Collection Online. n.d. Cheang. Shu Lea Cheang,
Brandon, Accessed August 1, 2018. https://www.
guggenheim.org/artwork/15337.

Laurenson, P. 2004. The Management of Display Equipment in
Time-based Media Installations. Tate Papers No. 3 / Spring
2005. Accessed December 28, 2018. https://www.tate.org.

https://orcid.org/0000-0003-2703-3075
http://orcid.org/0000-0002-2923-8827
http://www.conservation-us.org/ethics
http://www.conservation-us.org/ethics
http://pericles-project.eu/uploads/files/PERICLES_SBA_CoP_report_2017_FINAL.pdf
http://pericles-project.eu/uploads/files/PERICLES_SBA_CoP_report_2017_FINAL.pdf
http://pericles-project.eu/uploads/files/PERICLES_SBA_CoP_report_2017_FINAL.pdf
http://www.ecco-eu.org/fileadmin/user_upload/ECCO_professional_guidelines_II.pdf
http://www.ecco-eu.org/fileadmin/user_upload/ECCO_professional_guidelines_II.pdf
http://digitalhumanities.org/dhq/vol/12/2/000379/000379.html
http://digitalhumanities.org/dhq/vol/12/2/000379/000379.html
http://rhizome.org/editorial/2017/may/30/preservation-by-accident-is-not-a-plan/
http://rhizome.org/editorial/2017/may/30/preservation-by-accident-is-not-a-plan/
http://purl.pt/24107/1/iPres2013_PDF/Large-Scale%20Curation%20and%20Presentation%20of%20CD-ROM%20Art.pdf
http://purl.pt/24107/1/iPres2013_PDF/Large-Scale%20Curation%20and%20Presentation%20of%20CD-ROM%20Art.pdf
http://purl.pt/24107/1/iPres2013_PDF/Large-Scale%20Curation%20and%20Presentation%20of%20CD-ROM%20Art.pdf
https://git-scm.com
https://git-scm.com
https://www.guggenheim.org/blogs/checklist/how-the-guggenheim-and-nyu-are-conserving-computer-based-art-part-1
https://www.guggenheim.org/blogs/checklist/how-the-guggenheim-and-nyu-are-conserving-computer-based-art-part-1
https://www.guggenheim.org/blogs/checklist/how-the-guggenheim-and-nyu-are-conserving-computer-based-art-part-2
https://www.guggenheim.org/blogs/checklist/how-the-guggenheim-and-nyu-are-conserving-computer-based-art-part-2
https://www.guggenheim.org/blogs/checklist/how-the-guggenheim-and-nyu-are-conserving-computer-based-art-part-2
https://www.guggenheim.org/blogs/checklist/restoring-brandon-shu-lea-cheangs-early-web-artwork
https://www.guggenheim.org/blogs/checklist/restoring-brandon-shu-lea-cheangs-early-web-artwork
https://www.guggenheim.org/artwork/20625
https://www.guggenheim.org/artwork/20625
https://www.guggenheim.org/artwork/15337
https://www.guggenheim.org/artwork/15337
https://www.tate.org.uk/research/publications/tate-papers/03/the-management-of-display-equipment-in-time-based-media-installations

uk/research/publications/tate-papers/03/the-management
-of-display-equipment-in-time-based-media-installations.

Laurenson, P. 2006. Authenticity, Change and Loss in the
Conservation of Time-Based Media Installations. Tate
Papers No. 6, Autumn 2006. Accessed December 28,
2018. https://www.tate.org.uk/research/publications/tate-
papers/06/authenticity-change-and-loss-conservation-of-ti
me-based-media-installations.

Laurenson, P. 2014. “Old Media, New Media? Significant
Difference and the Conservation of Software-Based Art.”
In New Collecting: Exhibiting and Audiences After New
Media Art, edited by B. Graham, 73-96. Dorchester:
Routledge.

Miller, C. 2017. Adobe Announces Plans to Shutter Contribute,
Director, and Shockwave Starting Next Month. In 9TO5Mac,
January 28, 2017. Accessed August 1, 2018. https://9to5mac.
com/2017/01/28/adobe-shutter-contribute-director-shockwa
ve/.

Munoz Vidas, S. 2005. “Preventive
Contemporary Theory of Conservation.
Elsevier Butterworth-Heinemann, 22.

Muiioz Vifias, S. 2009. “Minimal Intervention Revisited.” In
Conservation Principles, Dilemmas and Uncomfortable
Truths, edited by A. Richmond, and A. Bracker, 47-59.
London: Elsevier Butterworth-Heinemann.

Phillips, J. 2010. “Kunstmaterial oder Elektroschrott? Uber das
Sterben und Auferstehen elektronischer Kunstwerke.” In
Wann stirbt ein Kunstwerk?, edited by Angela Matyssek,
105-124. Munich: Verlag Silke Schreiber.

Phillips, J. 2012. “Shifting Equipment Significance in Time-
based Media Art.” Electronic Media Review 1. Washington:
139-154.

Phillips, J. 2015. “Reporting Iterations: A Documentation Model
for Time-Based Media Art.” Performing Documentation,
Revista de Historia da Arte, edited by Gunnar Heydenreich,
Rita Macedo, and Lucia Matos, 168-179. Lisbon: Instituto
de Historia da Arte (IHA) and the Network for
Conservation of Contemporary Art (NeCCAR). http://
revistaharte.fcsh.unl.pt/rhaw4/RHAw4.pdf.

Rechert, K., P. Falcao, and T. Ensom. 2016. Introduction to an
Emulation-based Preservation Strategy for Software-based
Artworks, Tate Research Publications. Accessed August 1,
2018. http://www.tate.org.uk/download/file/fid/105887.

Preservation.”
Burlington:

JOURNAL OF THE AMERICAN INSTITUTE FOR CONSERVATION 195

Rechert, K, D. von Suchodoletz, and R. Welte. 2010.
“Emulation Based Services in Digital Preservation.”
Proceedings of the 10th annual joint conference on
digital libraries (JCDL ‘10). ACM, New York, NY, USA,
365-368.

SBMK (Stichting Behoud Moderne Kunst). 1999. “The Decision-
Making Model for the Conservation and Restoration of
Modern and Contemporary Art” In Modern Art: Who
Cares?, 164-172. London: Archetype Publications.

The Variable Media Approach. 2003. Permanence Through
Change: The Variable Media Approach. New York: The
Solomon R. Guggenheim Foundation and Montreal: The
Daniel Langlois Foundation for Art, Science, and
Technology. Accessed December 28, 2018. http://www.
variablemedia.net/e/preserving/html/var_pub_index.html.

Van de Vall, R. 2009. Towards a Theory and Ethics for the
Conservation of Contemporary Art. Art D’Aujourd’Hui,
Patrimoine de Demain, Conservation et Restauration des
Oeuvres Contemporaines. 13es journées d’études de la SFIIC.
Paris. 51-56.

Van de Vall, R. 2015. “The Devil and the Details: The Ontology
of Contemporary Art in Conservation Theory and
Practice.” The British Journal of Aesthetics 55 (3): 285-302.

Versteeg, S. 2014. Artist Interview By Joanna Phillips, Deena
Engel, Aarti Bagul, Shan Shao, Jiwon Shin and Brian
Castriota at the Guggenheim Media Conservation Lab,
New York, October 24, 2014. Audio recording and transcript,
Conservation Department Records, Solomon R. Guggenheim
Museum.

Villers, C. 2004. “Post Minimal Intervention.” The Conservator
28 (1): 3-10.

von Suchodoletz, D., K. Rechert, and B. van der Werf. 2012. “Long-
term Preservation in the Digital Age — Emulation as a Generic
Preservation Strategy.” Praxis der Informationsverarbeitung
und Kommunikation 35 (4): 225-226.

Weyer, C. 2010. “Media Art and the Limits of Established
Ethics of Restoration.” In Theory and Practice in the
Conservation of Modern and Contemporary Art, edited by
U. Schidler-Saub and A. Weyer, 21-32. London:
Archetype Publications.

Wharton, G. 2018. “Bespoke Ethics and Moral Casuistry in the
Conservation of Contemporary Art.” Journal of the Institute
of Conservation 41 (1): 58-70.

https://www.tate.org.uk/research/publications/tate-papers/03/the-management-of-display-equipment-in-time-based-media-installations
https://www.tate.org.uk/research/publications/tate-papers/03/the-management-of-display-equipment-in-time-based-media-installations
https://www.tate.org.uk/research/publications/tate-papers/06/authenticity-change-and-loss-conservation-of-time-based-media-installations
https://www.tate.org.uk/research/publications/tate-papers/06/authenticity-change-and-loss-conservation-of-time-based-media-installations
https://www.tate.org.uk/research/publications/tate-papers/06/authenticity-change-and-loss-conservation-of-time-based-media-installations
https://www.9to5mac.com/2017/01/28/adobe-shutter-contribute-director-shockwave/
https://www.9to5mac.com/2017/01/28/adobe-shutter-contribute-director-shockwave/
https://www.9to5mac.com/2017/01/28/adobe-shutter-contribute-director-shockwave/
http://revistaharte.fcsh.unl.pt/rhaw4/RHAw4.pdf
http://revistaharte.fcsh.unl.pt/rhaw4/RHAw4.pdf
http://www.tate.org.uk/download/file/fid/105887
http://www.variablemedia.net/e/preserving/html/var_pub_index.html
http://www.variablemedia.net/e/preserving/html/var_pub_index.html

	Abstract
	1. Introduction
	2. The application of conservation ethics to the care of software- and computer-based art
	2.1. Respect for the original
	2.1.1. Significance of the artist-selected technology
	2.1.2. Significance of the artist-selected programming language
	2.1.3. Significance of the artist’s or programmer’s coding style

	2.2. Informed choice of treatment methods
	2.3. The supervision challenge: delegating treatment, but not the responsibility
	2.3.1. Different approaches between disciplines
	2.3.2. Developing common ground between disciplines

	2.4. Compensation for loss: detectability and reversibility
	2.5. Documentation
	2.5.1. Creating meaningful examination records
	2.5.2. Documentation of conservation treatments

	2.6. Preventive conservation

	3. Conclusion and outlook
	Acknowledgements
	Disclosure statement
	Notes on contributors
	ORCID
	References

